Loading report..

Highlight Samples

Regex mode off

    Rename Samples

    Click here for bulk input.

    Paste two columns of a tab-delimited table here (eg. from Excel).

    First column should be the old name, second column the new name.

    Regex mode off

      Show / Hide Samples

      Regex mode off

        Export Plots

        px
        px
        X

        Download the raw data used to create the plots in this report below:

        Note that additional data was saved in multiqc_data when this report was generated.


        Choose Plots

        If you use plots from MultiQC in a publication or presentation, please cite:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        Save Settings

        You can save the toolbox settings for this report to the browser.


        Load Settings

        Choose a saved report profile from the dropdown box below:

        Tool Citations

        Please remember to cite the tools that you use in your analysis.

        To help with this, you can download publication details of the tools mentioned in this report:

        About MultiQC

        This report was generated using MultiQC, version 1.14

        You can see a YouTube video describing how to use MultiQC reports here: https://youtu.be/qPbIlO_KWN0

        For more information about MultiQC, including other videos and extensive documentation, please visit http://multiqc.info

        You can report bugs, suggest improvements and find the source code for MultiQC on GitHub: https://github.com/ewels/MultiQC

        MultiQC is published in Bioinformatics:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

        This report has been generated by the Arcadia-Science/reads2genome analysis pipeline using the PacBio workflow.

        Report generated on 2023-08-09, 20:16 UTC based on data in: /tmp/nxf.kB242I4vX3


        General Statistics

        Showing 48/48 rows and 7/9 columns.
        Sample NameN50 (Kbp)Assembly Length (Mbp)Error rateM Non-PrimaryM Reads Mapped% MappedM Total seqs
        acineobacter_baumanii_AYE
        0.17%
        0.0
        0.0
        99.9%
        0.0
        acineobacter_baumanii_AYE.flye.assembly
        3938.8Kbp
        3.9Mbp
        bacillus_cereus_971
        0.12%
        0.0
        0.0
        100.0%
        0.0
        bacillus_cereus_971.flye.assembly
        5416.5Kbp
        5.4Mbp
        bacillus_subtilis_w23
        0.15%
        0.0
        0.0
        99.9%
        0.0
        bacillus_subtilis_w23.flye.assembly
        4045.6Kbp
        4.0Mbp
        burkholderia_cepacia_ucb717
        0.14%
        0.0
        0.0
        100.0%
        0.0
        burkholderia_cepacia_ucb717.flye.assembly
        3397.8Kbp
        8.6Mbp
        burkholderia_multivorans_249
        0.16%
        0.0
        0.0
        100.0%
        0.0
        burkholderia_multivorans_249.flye.assembly
        2473.2Kbp
        7.0Mbp
        enterococcus_faecalis_og1rf
        0.15%
        0.0
        0.0
        100.0%
        0.0
        enterococcus_faecalis_og1rf.flye.assembly
        2739.6Kbp
        2.7Mbp
        escherichia_coli_h10407
        0.17%
        0.0
        0.0
        99.9%
        0.0
        escherichia_coli_h10407.flye.assembly
        5153.4Kbp
        5.4Mbp
        escherichia_coli_k12_mg1655
        0.15%
        0.0
        0.0
        100.0%
        0.0
        escherichia_coli_k12_mg1655.flye.assembly
        4639.0Kbp
        4.6Mbp
        helicobacter_pylori_j99
        0.20%
        0.0
        0.0
        99.9%
        0.0
        helicobacter_pylori_j99.flye.assembly
        1645.7Kbp
        1.6Mbp
        klebsiella_pneumonia_baa2146
        0.12%
        0.0
        0.0
        100.0%
        0.0
        klebsiella_pneumonia_baa2146.flye.assembly
        5435.7Kbp
        5.8Mbp
        listeria_monocytogenes_li2
        0.14%
        0.0
        0.0
        99.9%
        0.0
        listeria_monocytogenes_li2.flye.assembly
        2951.0Kbp
        3.0Mbp
        listeria_monocytogenes_li23
        0.14%
        0.0
        0.0
        99.9%
        0.0
        listeria_monocytogenes_li23.flye.assembly
        2979.7Kbp
        3.0Mbp
        methanocorpusculum_labreanum_z
        0.18%
        0.0
        0.0
        100.0%
        0.0
        methanocorpusculum_labreanum_z.flye.assembly
        1805.0Kbp
        1.8Mbp
        neisseria_meningitidis_fam18
        0.17%
        0.0
        0.0
        99.8%
        0.0
        neisseria_meningitidis_fam18.flye.assembly
        2194.9Kbp
        2.2Mbp
        neisseria_meningitidis_serogroup_b
        0.16%
        0.0
        0.0
        100.0%
        0.0
        neisseria_meningitidis_serogroup_b.flye.assembly
        2305.8Kbp
        2.3Mbp
        rhodopseudomonas_palustris_cga009
        0.15%
        0.0
        0.0
        99.9%
        0.0
        rhodopseudomonas_palustris_cga009.flye.assembly
        5459.2Kbp
        5.5Mbp
        salmonella_enterica_lt2
        0.16%
        0.0
        0.0
        100.0%
        0.0
        salmonella_enterica_lt2.flye.assembly
        4857.5Kbp
        5.0Mbp
        salmonella_enterica_ty2
        0.15%
        0.0
        0.0
        100.0%
        0.0
        salmonella_enterica_ty2.flye.assembly
        4792.0Kbp
        4.8Mbp
        staphylococcus_aureus_USA300_TCH1516
        0.11%
        0.0
        0.0
        97.6%
        0.0
        staphylococcus_aureus_USA300_TCH1516.flye.assembly
        2878.9Kbp
        2.9Mbp
        staphylococcus_aureus_seattle1945
        0.12%
        0.0
        0.0
        99.9%
        0.0
        staphylococcus_aureus_seattle1945.flye.assembly
        2778.9Kbp
        2.8Mbp
        streptococcus_pyogenes_bruno
        0.11%
        0.0
        0.0
        100.0%
        0.0
        streptococcus_pyogenes_bruno.flye.assembly
        1839.0Kbp
        1.8Mbp
        thermanaerovibrio_acidaminovorans_dsm6589
        0.14%
        0.0
        0.0
        99.1%
        0.0
        thermanaerovibrio_acidaminovorans_dsm6589.flye.assembly
        1850.2Kbp
        1.9Mbp
        treponema_denticola_a
        0.18%
        0.0
        0.0
        99.9%
        0.0
        treponema_denticola_a.flye.assembly
        2842.7Kbp
        2.8Mbp
        vibrio_parahaemolyticus_eb101
        0.13%
        0.0
        0.0
        100.0%
        0.0
        vibrio_parahaemolyticus_eb101.flye.assembly
        3165.6Kbp
        5.2Mbp

        NanoStat

        NanoStat various statistics from a long read sequencing dataset in fastq, bam or sequencing summary format.DOI: 10.1093/bioinformatics/bty149.

        Fastq stats

        NanoStat statistics from FastQ files.

        Showing 24/24 rows and 5/7 columns.
        Sample NameMedian lengthRead N50Median Qual# Reads (K)Total Bases (Mb)
        acineobacter_baumanii_AYE_nanoplot_stats
        8354 bp
        9130 bp
        38.1
        15.2
        129.0
        bacillus_cereus_971_nanoplot_stats
        6064 bp
        7501 bp
        41.3
        24.9
        154.0
        bacillus_subtilis_w23_nanoplot_stats
        8810 bp
        9674 bp
        36.7
        18.3
        163.7
        burkholderia_cepacia_ucb717_nanoplot_stats
        7994 bp
        8755 bp
        36.9
        45.4
        368.7
        burkholderia_multivorans_249_nanoplot_stats
        8635 bp
        9585 bp
        36.0
        27.7
        242.9
        enterococcus_faecalis_og1rf_nanoplot_stats
        7717 bp
        8728 bp
        37.8
        13.1
        101.4
        escherichia_coli_h10407_nanoplot_stats
        8472 bp
        9431 bp
        37.5
        26.4
        223.7
        escherichia_coli_k12_mg1655_nanoplot_stats
        9006 bp
        10059 bp
        36.7
        14.6
        132.3
        helicobacter_pylori_j99_nanoplot_stats
        7844 bp
        8752 bp
        35.3
        6.8
        53.9
        klebsiella_pneumonia_baa2146_nanoplot_stats
        6565 bp
        7385 bp
        40.0
        28.1
        185.2
        listeria_monocytogenes_li23_nanoplot_stats
        8180 bp
        9069 bp
        37.8
        13.0
        107.4
        listeria_monocytogenes_li2_nanoplot_stats
        8106 bp
        9209 bp
        37.4
        7.1
        57.5
        methanocorpusculum_labreanum_z_nanoplot_stats
        6933 bp
        8068 bp
        37.7
        7.0
        48.7
        neisseria_meningitidis_fam18_nanoplot_stats
        7694 bp
        8693 bp
        37.2
        9.6
        74.4
        neisseria_meningitidis_serogroup_b_nanoplot_stats
        8086 bp
        8992 bp
        36.8
        9.7
        79.2
        rhodopseudomonas_palustris_cga009_nanoplot_stats
        7800 bp
        9094 bp
        37.6
        23.1
        179.6
        salmonella_enterica_lt2_nanoplot_stats
        9114 bp
        10070 bp
        36.1
        20.1
        186.4
        salmonella_enterica_ty2_nanoplot_stats
        7639 bp
        8841 bp
        38.3
        23.6
        179.1
        staphylococcus_aureus_USA300_TCH1516_nanoplot_stats
        7378 bp
        8195 bp
        40.2
        15.3
        114.6
        staphylococcus_aureus_seattle1945_nanoplot_stats
        7762 bp
        8761 bp
        39.1
        7.1
        54.5
        streptococcus_pyogenes_bruno_nanoplot_stats
        6787 bp
        7752 bp
        40.1
        10.7
        73.3
        thermanaerovibrio_acidaminovorans_dsm6589_nanoplot_stats
        2939 bp
        4769 bp
        42.2
        14.5
        54.8
        treponema_denticola_a_nanoplot_stats
        8388 bp
        9314 bp
        35.5
        14.1
        119.1
        vibrio_parahaemolyticus_eb101_nanoplot_stats
        8811 bp
        9759 bp
        37.9
        20.1
        180.0

        Reads by quality

        Read counts categorised by read quality (phred score).

        Sequencing machines assign each generated read a quality score using the Phred scale. The phred score represents the liklelyhood that a given read contains errors. So, high quality reads have a high score.

        Data may come from NanoPlot reports generated with sequencing summary files or alignment stats. If a sample has data from both, the sequencing summary is preferred.

        loading..

        QUAST

        QUAST is a quality assessment tool for genome assemblies, written by the Center for Algorithmic Biotechnology.DOI: 10.1093/bioinformatics/btt086.

        Assembly Statistics

        Showing 24/24 rows and 4/4 columns.
        Sample NameN50 (Kbp)L50 (K)Largest contig (Kbp)Length (Mbp)
        acineobacter_baumanii_AYE.flye.assembly
        3938.8Kbp
        0.0K
        3938.8Kbp
        3.9Mbp
        bacillus_cereus_971.flye.assembly
        5416.5Kbp
        0.0K
        5416.5Kbp
        5.4Mbp
        bacillus_subtilis_w23.flye.assembly
        4045.6Kbp
        0.0K
        4045.6Kbp
        4.0Mbp
        burkholderia_cepacia_ucb717.flye.assembly
        3397.8Kbp
        0.0K
        3781.2Kbp
        8.6Mbp
        burkholderia_multivorans_249.flye.assembly
        2473.2Kbp
        0.0K
        3448.5Kbp
        7.0Mbp
        enterococcus_faecalis_og1rf.flye.assembly
        2739.6Kbp
        0.0K
        2739.6Kbp
        2.7Mbp
        escherichia_coli_h10407.flye.assembly
        5153.4Kbp
        0.0K
        5153.4Kbp
        5.4Mbp
        escherichia_coli_k12_mg1655.flye.assembly
        4639.0Kbp
        0.0K
        4639.0Kbp
        4.6Mbp
        helicobacter_pylori_j99.flye.assembly
        1645.7Kbp
        0.0K
        1645.7Kbp
        1.6Mbp
        klebsiella_pneumonia_baa2146.flye.assembly
        5435.7Kbp
        0.0K
        5435.7Kbp
        5.8Mbp
        listeria_monocytogenes_li2.flye.assembly
        2951.0Kbp
        0.0K
        2951.0Kbp
        3.0Mbp
        listeria_monocytogenes_li23.flye.assembly
        2979.7Kbp
        0.0K
        2979.7Kbp
        3.0Mbp
        methanocorpusculum_labreanum_z.flye.assembly
        1805.0Kbp
        0.0K
        1805.0Kbp
        1.8Mbp
        neisseria_meningitidis_fam18.flye.assembly
        2194.9Kbp
        0.0K
        2194.9Kbp
        2.2Mbp
        neisseria_meningitidis_serogroup_b.flye.assembly
        2305.8Kbp
        0.0K
        2305.8Kbp
        2.3Mbp
        rhodopseudomonas_palustris_cga009.flye.assembly
        5459.2Kbp
        0.0K
        5459.2Kbp
        5.5Mbp
        salmonella_enterica_lt2.flye.assembly
        4857.5Kbp
        0.0K
        4857.5Kbp
        5.0Mbp
        salmonella_enterica_ty2.flye.assembly
        4792.0Kbp
        0.0K
        4792.0Kbp
        4.8Mbp
        staphylococcus_aureus_USA300_TCH1516.flye.assembly
        2878.9Kbp
        0.0K
        2878.9Kbp
        2.9Mbp
        staphylococcus_aureus_seattle1945.flye.assembly
        2778.9Kbp
        0.0K
        2778.9Kbp
        2.8Mbp
        streptococcus_pyogenes_bruno.flye.assembly
        1839.0Kbp
        0.0K
        1839.0Kbp
        1.8Mbp
        thermanaerovibrio_acidaminovorans_dsm6589.flye.assembly
        1850.2Kbp
        0.0K
        1850.2Kbp
        1.9Mbp
        treponema_denticola_a.flye.assembly
        2842.7Kbp
        0.0K
        2842.7Kbp
        2.8Mbp
        vibrio_parahaemolyticus_eb101.flye.assembly
        3165.6Kbp
        0.0K
        3165.6Kbp
        5.2Mbp

        Number of Contigs

        This plot shows the number of contigs found for each assembly, broken down by length.

        loading..

        BUSCO

        BUSCO assesses genome assembly and annotation completeness with Benchmarking Universal Single-Copy Orthologs.DOI: 10.1093/bioinformatics/btv351.

        Lineage: bacteria_odb10

        loading..

        Samtools

        Samtools is a suite of programs for interacting with high-throughput sequencing data.DOI: 10.1093/bioinformatics/btp352.

        Percent Mapped

        Alignment metrics from samtools stats; mapped vs. unmapped reads.

        For a set of samples that have come from the same multiplexed library, similar numbers of reads for each sample are expected. Large differences in numbers might indicate issues during the library preparation process. Whilst large differences in read numbers may be controlled for in downstream processings (e.g. read count normalisation), you may wish to consider whether the read depths achieved have fallen below recommended levels depending on the applications.

        Low alignment rates could indicate contamination of samples (e.g. adapter sequences), low sequencing quality or other artefacts. These can be further investigated in the sequence level QC (e.g. from FastQC).

        loading..

        Alignment metrics

        This module parses the output from samtools stats. All numbers in millions.

        loading..

        Arcadia-Science/reads2genome Software Versions

        are collected at run time from the software output.

        Process Name Software Version
        BUSCO busco 5.4.3
        CHECK_SAMPLESHEET python 3.9.5
        CUSTOM_DUMPSOFTWAREVERSIONS python 3.11.0
        yaml 6.0
        FLYE flye 2.9-b1768
        MINIMAP2_INDEX minimap2 2.24-r1122
        NANOPLOT nanoplot 1.41.0
        QUAST quast 5.2.0
        SAMTOOLS_STATS samtools 1.17
        Workflow Arcadia-Science/reads2genome 1.0dev
        Nextflow 23.04.2

        Arcadia-Science/reads2genome Workflow Summary

        - this information is collected when the pipeline is started.

        Core Nextflow options

        revision
        main
        runName
        cranky_babbage
        containerEngine
        docker
        launchDir
        /
        workDir
        /nf-hifi2genome/scratch/5GkUCm3DuLbKSW
        projectDir
        /.nextflow/assets/Arcadia-Science/reads2genome
        userName
        root
        profile
        docker
        configFiles
        /.nextflow/assets/Arcadia-Science/reads2genome/nextflow.config, /nextflow.config

        input_output_options

        input
        s3://nf-test-datasets/reads2genome/2023-08-09-pbhifi-test-full-samplesheet.csv
        outdir
        s3://nf-test-datasets/reads2genome/pb_hifi_test
        platform
        pacbio

        busco_options

        lineage
        bacteria_odb10

        Email options

        email
        [email protected]
        from_email
        [email protected]

        Max job request options

        max_memory
        400.GB

        multiqc_options

        multiqc_title
        PacBio HiFi Microbes Full Test
        multiqc_methods_description
        N/A
        multiqc_logo
        N/A
        multiqc_config
        N/A